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Abstract

In this paper, we study the convergence property of PHYSALIS when it is applied to incompressible particle flows in

two-dimensional space. PHYSALIS is a recently proposed iterative method which computes the solution without

imposing the boundary conditions on the particle surfaces directly. Instead, a consistency equation based on the local

(near particle) representation of the solution is used as the boundary conditions. One of the important issues needs to be

addressed is the convergence properties of the iterative procedure. In this paper, we present the convergence analysis

using Laplace and biharmonic equations as two model problems. It is shown that convergence of the method can be

achieved but the rate of convergence depends on the relative locations of the cages. The results are directly related to

potential and Stokes flows. However, they are also relevant to Navier–Stokes flows, heat conduction in composite

media, and other problems.
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1. Introduction

Direct numerical simulation of flow around particles has been an active research area due to its relevance
to the modeling of multiphase flows and flows in a porous medium. For small particle concentration

problems (dilute case), one can solve the flow field by approximating the particles as points [1,3,13]. When

the effect of the particle size is not negligible, one has to deal with the boundary conditions on the particle

surfaces. Various methods have been proposed in the literature such as the method of fast multipole ex-

pansion [12], a fictitious domain method [7,10], the arbitrary Lagrangian–Eulerian (ALE) method [5,6], and

a lattice Boltzmann approach [2,4,8,9]. In general, these methods require considerable computer resources.
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Fig. 1. The setup inner and outer cages near a circular particle surface: (a) continuous case; (b) discrete case, as used in [14]. In the

discrete case, the arrows indicate the inner cage velocity points while the circles are on the outer cage.
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In [11,14], a new method called PHYSALIS has been successfully applied to three-dimensional potential

flows and two-dimensional incompressible viscous flows with nondilute particle concentrations. The basic

idea of the method, introduced in [11], can be outlined as follows. Suppose that each particle is enclosed by

a surface C1 (Fig. 1(a)) and there exists a local solution uðl1Þ valid between C1 and the particle surface C.
Suppose that uðl2Þ is the solution between the particle and a surface C2 which also encloses the particle (Fig.

1(a)), then there exists a consistency equation

uðl1Þ ¼ F12ðuðl2ÞÞ þ G12; ð1:1Þ

when the problem is linear, as in the case of Laplace equation (for potential flows) and biharmonic equation
(for Stokes flows). Here F12 and G12 are some known functionals. For nonlinear problems such as in-

compressible flows with a finite Reynolds number, an exact consistency relation may not exist. However, an

approximated equation similar to (1.1) often can be found by linearizing the problem. For example, near

the no-slip particle surface, the Navier–Stokes equation can be approximated by the Stokes one. Therefore,

the method has been applied to nonlinear problems and the analysis presented here is also relevant to those

cases.

Since the consistency relation (1.1) implies the satisfaction of the boundary conditions on the particle

surface, it can be used to replace the boundary conditions. These surfaces are called the inner and outer

cages, respectively, according to their relative distance from the particle surface. Without the loss of gen-

erality, we assume that C1 is the inner cage and C2 is the outer one throughout the rest of the paper. The

cages are normally close to the surfaces of the particles but not always outside the particles.

When a standard numerical method such as the finite volume method is used to find the far-field so-

lution, the solution domain is normally covered with a grid. For the ease of implementing (1.1), the sur-

faces, or the cages, are set up to coincide with the grid points or computational cells where the discrete

solutions are stored. An example is shown in Fig. 1(b), in which the cages go through the cell centers and

side faces where the velocity or their averaged values are located.
Since the local solutions uðl1Þ and uðl2Þ are not known a priori, the procedure is necessarily an iterative

one, consisting two steps. Firstly, supposed that uðl1;nÞ, an approximation of the local solution uðl1Þ is known.
Here the second superscript n denotes the number of iterations. The far-field solution uðf Þ can be computed

using (1.1) on the inner cage as a boundary condition. The value of uðf Þ on the outer cage is used to

construct the local solution uðl2Þ afterwards. This provides a functional relationship between the two local

solutions, which can be written as
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uðl2;nÞ ¼ F21ðuðl1;nÞÞ þ G21; ð1:2Þ

where F21 and G21 are some known functionals. (The details can be found in Sections 2 and 3.) As the

second step of the iteration, the consistency equation (1.1) is used to update uðl1Þ in the form of

uðl1;nþ1Þ ¼ F12ðuðl2;nÞÞ þ G12; ð1:3Þ

and the procedure continues. Combine (1.2) and (1.3), we obtain

uðl2;nþ1Þ ¼ H2ðuðl2;nÞÞ or uðl1;nþ1Þ ¼ H1ðuðl1;nÞÞ; ð1:4Þ

which are two related fixed-point iterations for the location solutions. The convergent solutions are

therefore the fixed-points of the following equations

uðl2Þ ¼ H2ðuðl2ÞÞ or uðl1Þ ¼ H1ðuðl1ÞÞ: ð1:5Þ

The numerical evidences in [11,14] suggest that the convergence of PHYSALIS in general can be

achieved. It is also observed that the method is more robust for potential flows than for Navier–Stokes

flows. The main objective of this paper is to present a detailed analysis of the convergence property of the

method, under the general framework outline above. The analysis will help us to explain the differences in

the performance of the method under various conditions. More importantly, it will enable us to find good

strategies for setting up the cages to achieve fast convergence. In order to simplify the analysis, we will only

consider a special case in two space dimensions. We will assume that there exists one particle in the entire
domain and the particle surface and the far-field boundary are two concentric circles, centered at the

original. The cages considered in this study are also circles centered at the original. We will use Laplace and

biharmonic equations as two model problems. These two problems have applications not only in fluid

flows, but also in other areas such as heat conduction, electro-magnetic fields, and linear elasticity.

However, our discussion will be centered on potential and Stokes flows. In addition, we will not be con-

cerned with the specifics of solution methods used to compute the far-field and local solutions and assume

that the solutions can be obtained exactly.

With these simplifications, we show that the fixed point iterations (1.4) can be simplified as

~UU ðk;nþ1Þ ¼ Tk~UU ðk;nÞ þ ðI � TkÞ~UU ðkÞ; ð1:6Þ

where Tk are either scalars or 2� 2 matrices, ~UU ðkÞ are vectors of at most two components, which are co-
efficients associated with the kth eigensolution, and ~UU ðk;nÞ are the values of the nth iteration. Thus the

convergence of the method can be analyzed by examining the eigenvalues of Tk, or their spectral radii. Since
the iterative matrices Tk depend on the location of the two cages and matching conditions on the cages, the

effects of these factors on the speed of convergence can be studied easily.

Our analysis show that for potential flows the best strategy is to use the normal velocity (a Neumann

type of condition) on the inner cage to compute the far-field solution and update the coefficients of the

eigenfunction expansion of the velocity potential (local solution) by matching the velocity potential directly

on the outer cage. Convergence can be achieved as well if the velocity potential is used on both cages while
the speed of convergence is slower. Other combinations of matching conditions in general result in poorer

convergence (see Section 2). For Stokes flows, the situation is more complicated. If velocity is used on both

the inner and outer cages, the iteration only converges when two cages are placed outside the cylinder

(particle). On the other hand, when the velocity is used on the inner cage while pressure and vorticity are

used on the outer cage, then convergence can be achieved by placing a single cage (i.e., the two cages

overlap) inside the cylinder. This corresponds to a strategy that uses the velocity to compute the flow field

(far-field solution) but updates the coefficients of the eigenfunction expansion (local solution) with pressure

and vorticity on a single cage.
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The rest of the paper is organized as follows. In Section 2, we introduce a model problem using

Laplace equation. The detailed procedure of PHYSALIS is described first, followed by the convergence

analysis. A model problem using the biharmonic equation is investigated in Section 3, which is directly

related to Stokes flows but also relevant to Navier–Stokes flows. Detailed discussion of convergence

property of the method is presented. We finish the paper with a brief summary and comments on future

work in Section 4.
2. Laplace equation

When the flow is irrotational, it is convenient to use velocity potential / as a primary variable, which

satisfies the Laplace equation. The no-flow condition on the particle surface corresponds to a Neumann

condition on the velocity potential.

2.1. A model problem

Consider the Laplace equation

r2/ðr; hÞ ¼ 0; ð2:1Þ

in X :¼ fðr; hÞj1 < r < R1; 06 h < 2pg, subject to Dirichlet conditions

/ðR1; hÞ ¼ /1ðhÞ; ð2:2Þ

and

o/
or

����
r¼1

¼ 0; ð2:3Þ

where /1 is a given function of h. It can be verified that the solution of (2.1) which satisfies (2.3) is

/ðr; hÞ ¼
X1
k¼1

akðrk
�

þ r�kÞ cosðkhÞ þ bkðrk þ r�kÞ sinðkhÞ
�
: ð2:4Þ

And we assume that the coefficients ak and bk are chosen such that the far-field condition (2.2) at r ¼ R1
is satisfied. We have nondimensionalized r using the particle radius. Thus r ¼ 1 represents the particle

surface.

We now describe the procedure of PHYSALIS applied to this model problem.
2.2. Procedure of PHYSALIS

Applied to the Laplace equation (2.1) with boundary conditions (2.2) and (2.3), PHYSALIS can be

described as an iterative procedure consisting of two steps.

Step 1. At the nth iteration, we solve (2.1) on domain X=X1 :¼ fðr; hÞjR1 < r < R1; 06 h < 2pg, where
r ¼ R1 is the inner cage and R1 can be greater or less than 1 in which case the cage is inside the cylinder. The

far-field solution takes the general form

/ðf ;nÞðr; hÞ ¼ aðnÞ0 log r þ
X1
k¼1

ðaðnÞk rk
h

þ bðnÞk r�kÞ cosðkhÞ þ ðcðnÞk rk þ dðnÞ
k r�kÞ sinðkhÞ

i
: ð2:5Þ
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Here the coefficients aðnÞk and bðnÞk for the kth cosine mode are determined by imposing the far-field condition

/ðf ;nÞðR1; hÞ ¼ /1ðhÞ; ð2:6Þ

and a condition on the inner cage r ¼ R1. This condition is provided by matching /ðf ;nÞ and /ðl;n�1Þ, the local

solution from the previous iteration, which will be discussed in Step 2. There are various ways to impose

this condition and we will discuss in details the Dirichlet condition

/ðf ;nÞðR1; hÞ ¼ /ðl;n�1ÞðR1; hÞ: ð2:7Þ

The coefficients cðnÞk and dðnÞ
k of the kth sine mode are determined similarly.

Step 2. We solve the Laplace equation on domain X2 :¼ fðr; hÞj1 < r < R2; 0 < h < 2pg or

X2 :¼ fðr; hÞjR2 < r < 1; 0 < h < 2pg. Here r ¼ R2 PR1 is the outer cage. The local solution /ðl;nÞ takes the

form of

/ðl;nÞðr; hÞ ¼
X1
k¼1

aðnÞ
k ðrk

h
þ r�kÞ cosðkhÞ þ bðnÞ

k ðrk þ r�kÞ sinðkhÞ
i
: ð2:8Þ

Note that this solution is similar to (2.4) except that the coefficients aðnÞ
k and bðnÞ

k are different from ak and

bk since in general the far-field condition (2.2) is not satisfied by /ðl;nÞ. The values of these coefficients are

determined by a boundary condition on the outer cage r ¼ R2, provided by matching /ðl;nÞ and /ðf ;nÞ, which

is obtained in Step 1. Again, there are several ways to impose the condition and we will study first the

Dirichlet condition

/ðl;nÞðR2; hÞ ¼ /ðf ;nÞðR2; hÞ: ð2:9Þ

Note that neither /ðf ;nÞ nor /ðl;nÞ is the solution of the Laplace equation on the original domain X as they

only satisfy one of the boundary conditions. However, one can view these two solutions as approximations

and more accurate approximations can be obtained by repeating the two steps described above, i.e., when
the equation is solved on X=X1, one can use /ðl;nÞ from the previous iteration to provide the boundary

condition on the inner cage and continue the process until convergence is reached.

In practice, one computes the solution /ðf ;nÞ on X=X1 by solving the equations numerically while the

solution /ðl;nÞ on X2 is represented by the eigenfunction expansion which automatically satisfies the

boundary conditions on the particle surface C. The coefficients of the eigenfunction expansion is updated

using /ðf ;nÞ during the iterative procedure. In the situations with multiple cylinders, the cages can be set up

around each individual cylinder and the numerical solution of the field can be matched up with the ana-

lytical expressions around them.

2.3. Convergence analysis

2.3.1. Dirichlet conditions

We first present the results for the Laplace equation using Dirichlet conditions as the matching conditions.

Lemma 2.1. Let u given by (2.4) be the solution of the Laplace equation (2.1) on X which satisfies (2.2) and
(2.3). Let /ðf ;nÞ given by (2.5) and /ðl;nÞ given by (2.8) be the far-field and local solution on X=X1 and X2,
respectively. /ðf ;nÞ satisfies the far-field condition (2.2) and /ðl;nÞ satisfies (2.3). Then the coefficients of the
eigenfunction expansions satisfy the following equations

aðnÞ
k ¼ kka

ðn�1Þ
k þ ð1� kkÞak; ð2:10Þ
bðnÞ
k ¼ kkb

ðn�1Þ
k þ ð1� kkÞbk; ð2:11Þ
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where

kk ¼
1� ðR2=R1Þ2k

1� ðR1=R1Þ2k
R2k
1 þ 1

R2k
2 þ 1

ð2:12Þ

if Dirichlet matching conditions (2.7) and (2.9) are used on both inner and outer cages.

Proof. In Step 1 of the procedure described earlier, the coefficients aðnÞk , bðnÞk , cðnÞk , and dðnÞ
k of /ðf ;nÞ are de-

termined by applying the boundary conditions on r ¼ R1 and r ¼ R1. At r ¼ R1, we simply use the second

condition in (2.2), /ðf ;nÞðR1; hÞ ¼ /ðR1; hÞ. And we have

aðnÞ0 ¼ 0;

aðnÞk Rk
1 þ bðnÞk R�k

1 ¼ akðRk
1 þ R�k

1 Þ;
cðnÞk Rk

1 þ dðnÞ
k R�k

1 ¼ bkðRk
1 þ R�k

1 Þ:

ð2:13Þ

At r ¼ R1, the solution /ðf ;nÞ is matched by /ðl;n�1Þ using the Dirichlet condition as

aðnÞ0 ¼ 0;

aðnÞk Rk
1 þ bðnÞk R�k

1 ¼ aðn�1Þ
k ðRk

1 þ R�k
1 Þ;

cðnÞk Rk
1 þ dðnÞ

k R�k
1 ¼ bðn�1Þ

k ðRk
1 þ R�k

1 Þ:

ð2:14Þ

Note that when n ¼ 1, we simply assign values for að0Þ
k and bð0Þ

k as initial guesses. Using (2.13) and (2.14),

the coefficients can be solved as aðnÞ0 ¼ 0 and

aðnÞk ¼ � 1

Dk
R�k
1 ðRk

1 þ R�k
1 Þak þ

1

Dk
R�k
1 ðRk

1 þ R�k
1 Þaðn�1Þ

k ; ð2:15Þ
bðnÞk ¼ 1

Dk
Rk
1ðRk

1 þ R�k
1 Þak �

1

Dk
Rk
1ðRk

1 þ R�k
1 Þaðn�1Þ

k ; ð2:16Þ
cðnÞk ¼ � 1

Dk
R�k
1 ðRk

1 þ R�k
1 Þbk þ

1

Dk
R�k
1 ðRk

1 þ R�k
1 Þbðn�1Þ

k ; ð2:17Þ
dðnÞ
k ¼ 1

Dk
Rk
1ðRk

1 þ R�k
1 Þbk �

1

Dk
Rk
1ðRk

1 þ R�k
1 Þbðn�1Þ

k ð2:18Þ

for k ¼ 1; 2; . . . ; where

Dk ¼ Rk
1R

�k
1 � Rk

1R
�k
1 :

In Step 2 of the procedure, we set up an outer cage r ¼ R2 PR1 and match /ðl;nÞ at the current (nth)
iteration with /ðf ;nÞ obtained in Step 1, using the Dirichlet condition

/ðl;nÞðR2; hÞ ¼ /ðf ;nÞðR2; hÞ:

We have

aðnÞ
k ¼ aðnÞk Rk

2 þ bðnÞk R�k
2

Rk
2 þ R�k

2

¼ kka
ðn�1Þ
k þ ð1� kkÞak; ð2:19Þ
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bðnÞ
k ¼ cðnÞk Rk

2 þ dðnÞ
k R�k

2

Rk
2 þ R�k

2

¼ kkb
ðn�1Þ
k þ ð1� kkÞbk ð2:20Þ

for k ¼ 1; 2; . . . ; where

kk ¼
1� ðR2=R1Þ2k

1� ðR1=R1Þ2k
R2k
1 þ 1

R2k
2 þ 1

:

This concludes the proof. �

The convergence of PHYSALIS for Laplace equation is given by the following corollary and theorem.

Corollary 2.1. The coefficients aðnÞ
k and bðnÞ

k of solution /ðl;nÞ satisfy the following equation

aðnÞ
k

bðnÞ
k

 !
¼ kn

k
að0Þ
k

bð0Þ
k

 !
þ ð1� kn

kÞ
ak

bk

	 

: ð2:21Þ
Theorem 2.1. Let /ðf ;nÞ (2.5) and /ðl;nÞ (2.8) be the far-field and local solutions of the Laplace equation
generated by the iterative procedure PHYSALIS. Then they converge to the exact solution u (2.4) if and only if
kk < 1 for all nonnegative integers k.

Proof. Since kk < 1, we have limn!1 kn
k ¼ 0. Using Corollary 2.1, we have aðnÞ

k ! ak, bðnÞ
k ! bk, Thus so-

lution (2.5) converges to (2.4). From (2.15), we have

lim
n!1

aðnÞk ¼ lim
n!1

�
� 1

Dk
R�k
1 ðRk

1 þ R�k
1 Þak þ

1

Dk
R�k
1 ðRk

1 þ R�k
1 ÞaðnÞ

k

�

¼ � 1

Dk
R�k
1 ðRk

1 þ R�k
1 Þak þ

1

Dk
R�k
1 ðRk

1 þ R�k
1 Þak ¼

1

Dk
fR�k

1 Rk
1 � R�k

1 Rk
1gak ¼ ak:

Similarly, from (2.16)–(2.18), we can show that

bðnÞk ! �ak; c
ðnÞ
k ! bk; d

ðnÞ
k ! �bk:

Thus the solution /ðf ;nÞ given by (2.8) also converges to the solution u given by (2.4). This concludes the

proof of the theorem. �

2.3.2. Other conditions

When the Laplace equation (2.1) is solved on X subject to (2.2) and (2.3), other matching condition such
as a Neumann condition can be used on both cages, i.e.,

o

or
/ðf ;nÞðR1; hÞ ¼

o

or
/ðl;n�1ÞðR1; hÞ; ð2:22Þ
o

or
/ðl;nÞðR2; hÞ ¼

o

or
/ðf ;nÞðR2; hÞ: ð2:23Þ

Or a combination of Dirichlet and Neumann conditions on inner and outer cages can also be used. It is

not difficulty to show that the coefficients of the eigenfunction expansion aðnÞ
k , bðnÞ

k , ak, and bk satisfy the

same recurrence formula (2.10) and (2.11) where
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kk ¼
1þ ðR2=R1Þ2k

1� ðR1=R1Þ2k
R2k
1 þ 1

R2k
2 � 1

; ð2:24Þ

using (2.7) and (2.23),

kk ¼
1� ðR2=R1Þ2k

1þ ðR1=R1Þ2k
R2k
1 � 1

R2k
2 þ 1

; ð2:25Þ

using (2.22) and (2.9), and finally

kk ¼
1þ ðR2=R1Þ2k

1þ ðR1=R1Þ2k
R2k
1 � 1

R2k
2 � 1

; ð2:26Þ

using (2.22) and (2.23).

Obviously Corollary 2.1 and Theorem 2.1 are applicable to these matching conditions. Therefore, the

convergence of PHYSALIS using different boundary and matching conditions depends on the values of kk

given above, which are discussed next.

2.3.3. Discussion

In general, the absolute value of kk given by (2.25) is the smallest, followed by (2.12), (2.26), and (2.24).

Therefore the Neumann condition is preferred on the outer cage and should be avoided on the inner cage.
In particular, we can make the following observations.

When Dirichlet matching conditions (2.7) and (2.9) are used on both inner and outer cages, in order for

the method to converge, we need to have kk < 1 where

kk ¼
1� ðR2=R1Þ2k

1� ðR1=R1Þ2k
R2k
1 þ 1

R2k
2 þ 1

:

It is clear that 06 kk < 1 as long as R1 < R2. Thus the method converges regardless of the values of

R1, R2 and k. Furthermore, for fixed values of R1 and R2 with 16R1 < R2, kk ! ðR1=R2Þ2k as k ! 1,

which indicates that convergence is asymptotically faster for higher modes. On the other hand, if

R1 < R2 6 1, kk ! 1 as k ! 1, which indicates that convergence is asymptotically slower for higher

modes. It can also be observed that the method does not converge when only one cage is used since
kk ¼ 1 when R2 ¼ R1.

When Dirichlet matching condition (2.9) is used on the outer cage and Neumann matching condition

(2.22) is used on the inner cage, we have

kk ¼
1� ðR2=R1Þ2k

1þ ðR1=R1Þ2k
R2k
1 � 1

R2k
2 þ 1

:

Obviously, kk < 1 for any choices of R1 and R2 including the case of R1 ¼ R2 (single cage approach) and

the case of R1;R2 < 1 (cages inside the cylinder). Furthermore, kk ! maxf1;R2k
1 g=maxfR2k

2 ; 1g as k ! 1.

Thus, if R1;R2 < 1, then kk ! 1 as k ! 1, which indicates that convergence slows down for high-order

modes if the cages are both placed inside the cylinder. Finally, the eigenvalues of this case is always smaller

than those in the previous case, indicating that convergence is faster.

For the remaining two cases, the convergence of the iteration is not guaranteed, indicated by (2.24) and

(2.26). Therefore, these matching conditions should be avoided in practice. We now turn our attention to
the biharmonic equation.
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3. Biharmonic equation

In the case of large viscosity or more accurately of small Reynolds numbers, Stokes flows are often used

as an approximation, where the stream-function satisfies the biharmonic equation. Biharmonic equation

also arises in other areas such as the linear elasticity theory. But we will focus on the fluid flows.

3.1. A model problem

Consider the biharmonic equation for w

r2r2wðr; hÞ ¼ 0; ð3:1Þ

in X :¼ fðr; hÞj1 < r < R1; 06 h < 2pg, subject to boundary conditions

w ¼ ow
or

¼ 0; when r ¼ 1; ð3:2Þ

and

w ¼ w1;
ow
or

¼ u1; when r ¼ R1; ð3:3Þ

where w1 and u1 are given function of h. Boundary condition (3.2) is called the no-slip condition, in the

context of Stokes flows, when the particle velocity is zero.
It is easy to verify that the solution of (3.1) which satisfies the no-slip condition (3.2) is 1

wðr; hÞ ¼ a0 r2



� 2 log r � 1
�
þ a1ðr3
�

� 2r þ r�1Þ þ b1ðr log r � r=2þ r�1=2Þ
�
cosðhÞ

þ âa1ðr3
h

� 2r þ r�1Þ þ b̂b1ðr log r � r=2þ r�1=2Þ
i
sinðhÞ þ

X1
k¼2

akðkrkþ2
�

� ðk þ 1Þrk þ r�kÞ

þ bkðkr2�k � ðk � 1Þr�k � rkÞ
�
cosðkhÞ þ

X1
k¼2

âakðkrkþ2
h

� ðk þ 1Þrk þ r�kÞ

þ b̂bkðkr2�k � ðk � 1Þr�k � rkÞ
i
sinðkhÞ: ð3:4Þ

For each cosine (sine) mode, there are two coefficients ak and bk (âak and b̂bk) to be determined by the far-

field condition (3.3).

3.2. Procedure of PHYSALIS

Similar to our discussion for the Laplace equation, the procedure of PHYSALIS, when it is applied to

the biharmonic equation (3.1), can be described by the following two steps.

Step 1. We solve (3.1) on domain X=X1 :¼ fðr; hÞjR1 < r < R1; 06 h < 2pg, where r ¼ R1 is the inner

cage. The far-field solution wðf ;nÞ takes the general form of 2
1 It can be shown that at the zeroth order b0ðr2 � 1Þ log r must vanish otherwise the pressure will not be periodic in the h direction.
2 The term bðnÞ0 r2 log r is not present since the pressure will not be periodic in the h direction otherwise.
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wðf ;nÞðr; hÞ ¼ aðnÞ0 r2 þ cðnÞ0 log r þ dðnÞ
0 þ aðnÞ1 r3

�
þ bðnÞ1 r log r þ cðnÞ1 r þ dðnÞ

1 r�1
�
cosðhÞ

þ âaðnÞ1 r3
�

þ b̂bðnÞ1 r log r þ ĉcðnÞ1 r þ d̂dðnÞ
1 r�1

�
sinðhÞ þ

X1
k¼2

aðnÞk rkþ2
�

þ bðnÞk r2�k þ cðnÞk rk þ dðnÞ
k r�k

�

� cosðkhÞ þ
X1
k¼2

âaðnÞk rkþ2
�

þ b̂bðnÞk r2�k þ ĉcðnÞk rk þ d̂dðnÞ
k r�k

�
sinðkhÞ; ð3:5Þ

where the superscript n denotes the solution at the nth iteration. For each cosine and sine modes in the

expansion, there are four constant coefficients, which can be determined as follows. Since the coefficients for

the sine modes can be determined in the same way as the cosine modes, we will not discuss them explicitly in
the rest of the paper. First we obtain two equations for four coefficients aðnÞk , bðnÞk , cðnÞk , and dðnÞ

k in the kth
cosine mode by imposing the far-field condition

wðf ;nÞ ¼ w1ðhÞ;
owðf ;nÞ

or
¼ u1ðhÞ; r ¼ R1: ð3:6Þ

The other two equations are provided by matching wðf ;nÞ with wðl;n�1Þ, the local solution from the pre-

vious iteration n� 1, which will be discussed in Step 2. There are various ways to impose the matching

conditions and in this paper we will discuss two approaches. The simplest is to match the velocity

owðf ;nÞ

oh
¼ owðl;n�1Þ

oh
;

owðf ;nÞ

or
¼ owðl;n�1Þ

or
; r ¼ R1: ð3:7Þ

Step 2. We solve the biharmonic equation on domain X2 :¼ fðr; hÞj1 < r < R2; 0 < h < 2pg or

X2 :¼ fðr; hÞjR2 < r < 1; 0 < h < 2pg, where r ¼ R2 PR1 is the outer cage. We impose the no-slip condition

(3.2) and the local solution wðl;nÞ can be written as

wðl;nÞðr; hÞ ¼ aðnÞ
0 r2



� 2 log r � 1
�
þ aðnÞ

1 ðr3
h

� 2r þ r�1Þ þ bðnÞ
1 ðr log r � r=2þ r�1=2Þ

i
cosðhÞ

þ âaðnÞ
1 ðr3

h
� 2r þ r�1Þ þ b̂bðnÞ

1 ðr log r � r=2þ r�1=2Þ
i
sinðhÞ

þ
X1
k¼2

aðnÞ
k ðkrkþ2

h
� ðk þ 1Þrk þ r�kÞ þ bðnÞ

k ðkr2�k � ðk � 1Þr�k � rkÞ
i
cosðkhÞ

þ
X1
k¼2

âaðnÞ
k ðkrkþ2

h
� ðk þ 1Þrk þ r�kÞ þ b̂bðnÞ

k ðkr2�k � ðk � 1Þr�k � rkÞ
i
sinðkhÞ: ð3:8Þ

Note that this solution is similar to (3.4) except that the coefficients ak and bk are replaced by aðnÞ
k and

bðnÞ
k . In general aðnÞ

k and bðnÞ
k are different from ak and bk since the far-field condition in (3.3) is not satisfied

by wðl;nÞ. The values of these coefficients are determined by �boundary conditions� on the outer cage r ¼ R2,

which is provided by matching wðl;nÞ with wðf ;nÞ obtained in Step 1. Again, there are several approaches can
be used and one of these is to match the velocity

owðl;nÞ

oh
¼ owðf ;nÞ

oh
;

owðl;nÞ

or
¼ owðf ;nÞ

or
; r ¼ R2: ð3:9Þ
Other approaches can also be used. For example, one can match vorticity and pressure and the details of
this matching condition will be discussed in Section 3.3.2.
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3.3. Convergence analysis

We first present the main convergence results when the velocity is matched on both the inner and outer

cages.

3.3.1. Velocity matching conditions

Lemma 3.1. Let w given in (3.4) be the solution of the biharmonic equation (3.1) on X which satisfies both (3.2)
and (3.3). Let wðf ;nÞ given by (3.5) and wðl;nÞ given by (3.8) be the far-field and local solutions on X=X1 and X2,

respectively. wðf ;nÞ satisfies the far-field condition (3.3) and wðl;nÞ satisfies the no-slip condition (3.2). Velocity
conditions (3.7) and (3.9) are used on inner cage to match wðf ;nÞ and wðl;n�1Þ and on outer cage to match wðf ;nÞ

and wðl;nÞ. Then the coefficients of the eigenfunction expansions satisfy the following equations

aðnÞ
0 ¼ q0a

ðn�1Þ
0 þ ð1� q0Þa0; âaðnÞ

0 ¼ q0âa
ðn�1Þ
0 þ ð1� q0Þâa0; ð3:10Þ

where

q0 ¼
ðR2

1 � R2
2ÞðR2

1 � 1Þ
ðR2

1 � R2
1ÞðR2

2 � 1Þ :

For kP 1,

aðnÞ
k

bðnÞ
k

 !
¼ Tk

aðn�1Þ
k

bðn�1Þ
k

 !
þ ðI � TkÞ

ak

bk

	 

; ð3:11Þ
âaðnÞ
k

b̂bðnÞ
k

 !
¼ Tk

âaðn�1Þ
k

b̂bðn�1Þ
k

 !
þ ðI � TkÞ

âak

b̂bk

	 

; ð3:12Þ

where Tk is a 2� 2 square matrix given by

Tk ¼ D�1
k EkA�1

k
Bk

0

	 

;

and

Ak ¼
Rkþ2
1 R2�k

1 Rk
1 R�k

1

ðk þ 2ÞRkþ2
1 ð2� kÞR2�k

1 kRk
1 �kR�k

1

Rkþ2
1 R2�k

1 Rk
1 R�k

1
ðk þ 2ÞRkþ2

1 ð2� kÞR2�k
1 kRk

1 �kR�k
1

0
BB@

1
CCA; ð3:13Þ
Bk ¼
kRkþ2

1 � ðk þ 1ÞRk
1 þ R�k

1 kR2�k
1 � ðk � 1ÞR�k

1 � Rk
1

kðk þ 2ÞRkþ2
1 � ðk þ 1ÞkR2�k

1 � kR�k
1 kð2� kÞR2�k

1 þ kðk � 1ÞR�k
1 � kRk

1

	 

; ð3:14Þ
Dk ¼
kRkþ2

2 � ðk þ 1ÞRk
2 þ R�k

2 kR2�k
2 � ðk � 1ÞR�k

2 � Rk
2

kðk þ 2ÞRkþ2
2 � ðk þ 1ÞkR2�k

2 � kR�k
2 kð2� kÞR2�k

2 þ kðk � 1ÞR�k
2 � kRk

2

	 

; ð3:15Þ
Ek ¼
Rkþ2
2 R2�k

2 Rk
2 R�k

2

ðk þ 2ÞRkþ2
2 ð2� kÞR2�k

2 kRk
2 �kR�k

2

	 

ð3:16Þ
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for kP 2, and when k ¼ 1,

A1 ¼
R3
1 R1 logR1 R1 R�1

1

3R3
1 R1 logR1 þ 1ð Þ R1 �R�1

1

R3
1 R1 logR1 R1 R�1

1
3R3

1 R1 logR1 þ 1ð Þ R1 �R�1
1

0
BB@

1
CCA; ð3:17Þ
B1 ¼
R3
1 � 2R1 þ R�1

1 R1 logR1 � R1=2þ R�1
1 =2

3R3
1 � 2R1 � R�1

1 R1 logR1 þ R1=2� R�1
1 =2

	 

; ð3:18Þ
D1 ¼
R3
2 � 2R2 þ R�1

2 R2 logR2 � R2=2þ R�1
2 =2

3R3
2 � 2R2 � R�1

2 R2 logR2 þ R2=2� R�1
2 =2

	 

; ð3:19Þ
E1 ¼
R3
2 R2 logR2 R2 R�1

2

3R3
2 R2 logR2 þ 1ð Þ R2 �R�1

2

	 

: ð3:20Þ
Proof. To prove this lemma, we simply go through the two steps described earlier. Since the discussion is
similar for k ¼ 0, k ¼ 1, and for kP 2, we only provide the details for k P 2. In Step 1 of the procedure

described previously, to determine the coefficients aðnÞk , bðnÞk , cðnÞk , and dðnÞ
k of wðf ;nÞ, we apply the far-field

condition (3.3) which yields two equations for kP 2

Rkþ2
1 aðnÞk þ R2�k

1 bðnÞk þ Rk
1c

ðnÞ
k þ R�k

1 dðnÞ
k ¼ ðkR2þk

1 � ðk þ 1ÞRk
1 þ R�k

1 Þak þ ðkR2�k
1 � ðk � 1ÞR�k

1 � Rk
1Þbk;

ð3:21Þ
ðk þ 2ÞRkþ2
1 aðnÞk þ ð2� kÞR2�k

1 bðnÞk þ kRk
1c

ðnÞ
k � kR�k

1 dðnÞ
k

¼ ðkðk þ 2ÞR2þk
1 � kðk þ 1ÞRk

1 � kR�k
1 Þak þ ðkð2� kÞR2�k

1 þ kðk � 1ÞR�k
1 � kRk

1Þbk: ð3:22Þ

Assuming that the solution wðl;n�1Þ from the previous iteration (denoted by the superscript n� 1) is

known, the matching condition (3.7) provides another two equations for k P 2

Rkþ2
1 aðnÞk þ R2�k

1 bðnÞk þ Rk
1c

ðnÞ
k þ R�k

1 dðnÞ
k ¼ kR2þk

1

�
� ðk þ 1ÞRk

1 þ R�k
1

�
aðn�1Þ
k þ kR2�k

1

�
� ðk � 1ÞR�k

1 � Rk
1

�
bðn�1Þ
k ;

ð3:23Þ
ðk þ 2ÞRkþ2
1 aðnÞk þ ð2� kÞR2�k

1 bðnÞk þ kRk
1c

ðnÞ
k � kR�k

1 dðnÞ
k

¼ k ðk
�

þ 2ÞR2þk
1 � ðk þ 1ÞRk

1 � R�k
1

�
aðn�1Þ
k þ k ð2

�
� kÞR2�k

1 þ ðk � 1ÞR�k
1 � Rk

1

�
bðn�1Þ
k : ð3:24Þ

Combining these four equations we have the matrix form

Ak

aðnÞk

bðnÞk

cðnÞk

dðnÞ
k

0
BBB@

1
CCCA ¼ Bk 0

0 Ck

	 
 aðn�1Þ
k

bðn�1Þ
k

ak

bk

0
BB@

1
CCA; ð3:25Þ

where Ak and Bk are given by (3.13) and (3.14), and
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Ck ¼
kRkþ2

1 � ðk þ 1ÞRk
1 þ R�k

1 kR2�k
1 � ðk � 1ÞR�k

1 � Rk
1

kðk þ 2ÞRkþ2
1 � ðk þ 1ÞkRk

1 � kR�k
1 kð2� kÞR2�k

1 þ kðk � 1ÞR�k
1 � kRk

1

	 

: ð3:26Þ

From Step 2 of the procedure, we have the solution wðl;nÞ of the form (3.8) with coefficients aðnÞ
k and bðnÞ

k to

be determined by matching condition (3.9), which yields

kR2þk
2

�
� ðk þ 1ÞRk

2 þ R�k
2

�
aðnÞ
k þ kR2�k

2

�
� ðk � 1ÞR�k

2 � R�k
2

�
bðnÞ
k

¼ Rkþ2
2 aðnÞk þ R2�k

2 bðnÞk þ Rk
2c

ðnÞ
k þ R�k

2 dðnÞ
k ; ð3:27Þ
k ðk
�

þ 2ÞR2þk
2 � ðk þ 1ÞRk

2 � R�k
2

�
aðnÞ
k þ k ð2

�
� kÞR2�k

2 þ ðk � 1ÞR�k
2 þ R�k

2

�
bðnÞ
k

¼ ðk þ 2ÞRkþ2
2 aðnÞk þ ð2� kÞR2�k

2 bðnÞk þ kRk
2c

ðnÞ
k � kR�k

2 dðnÞ
k ; ð3:28Þ

which can be written into a short matrix form as

Dk
aðnÞ
k

bðnÞ
k

 !
¼ Ek

aðnÞk

bðnÞk

cðnÞk

dðnÞ
k

0
BBB@

1
CCCA; ð3:29Þ

where Dk and Ek are given by (3.15) and (3.16). From (3.25) and (3.29), we obtain

aðnÞ
k

bðnÞ
k

 !
¼ D�1

k EkA�1
k

Bk

0

	 

aðn�1Þ
k

bðn�1Þ
k

 !
þ D�1

k EkA�1
k

0

Ck

	 

ak

bk

	 

:

After some algebraic manipulations, one can show that

D�1
k EkA�1

k
Bk

Ck

	 

¼ I :

Note that

Tk ¼ D�1
k EkA�1

k
Bk

0

	 

;

(3.11) follows immediately and (3.12) can be derived similarly. Similar derivation can be carried out for

k ¼ 0 and 1, therefore we conclude the proof of the lemma. �

The convergence of PHYSALIS using velocity matching conditions (3.7) and (3.9) is given by the fol-

lowing corollaries and theorem.

Corollary 3.1. The coefficients aðnÞ
k and bðnÞ

k of the local solution wðl;nÞ satisfy the following equations

aðnÞ
0 ¼ ðq0Þ

n aðn�1Þ
0

�
� a0

�
þ a0; ð3:30Þ
aðnÞ
k

bðnÞ
k

 !
¼ ðTkÞn

aðn�1Þ
k � ak

bðn�1Þ
k � bk

 !
þ ak

bk

	 

; k P 1: ð3:31Þ
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Corollary 3.2. The coefficients âaðnÞ
k and b̂bðnÞ

k of solution wðl;nÞ satisfy the following equations

âaðnÞ
0 ¼ ðq0Þ

n âaðn�1Þ
0

�
� âa0

�
þ âa0; ð3:32Þ
âaðnÞ
k

b̂bðnÞ
k

 !
¼ ðTkÞn

âaðn�1Þ
k � âak

b̂bðn�1Þ
k � b̂bk

 !
þ âak

b̂bk

	 

; k P 1: ð3:33Þ
Theorem 3.1. Let wðf ;nÞ and wðl;nÞ be the far-field and local solutions of the biharmonic equation generated by
the iterative procedure PHYSALIS. Then they converge to the exact solution w if and only if q0 < 1 and
qk < 1 for all positive integer k, where qk is the spectral radius of matrix Tk.

Proof. Since qk < 1, we have limn!1 T n
k ¼ 0. Using Corollary 3.1 and 3.2, we have aðnÞ

k ! ak, bðnÞ
k ! bk,

âaðnÞ
k ! âak and b̂bðnÞ

k ! b̂bk for k ¼ 0; 1; 2; . . . Thus solution wðl;nÞ given by (3.8) converges to w given by (3.4).

Since the solution of the biharmonic equation with the given boundary conditions are unique, we conclude

that solution wðf ;nÞ given by (3.5) also converges to w given by (3.4). This concludes the proof of the

theorem. �

Even though Lemma 3.1 is proved for PHYSALIS using particular matching conditions (3.7) and (3.9),

it it not difficult to see that other matching conditions will lead to similar conclusions, which will be dis-

cussed briefly next.
3.3.2. Other matching conditions

The main reason for using other matching conditions is that the velocity matching condition does not

work for a single cage approach (see Section 3.3.3). Furthermore, the Stokes approximation may only be
valid in the boundary layer outside the cylinder. Therefore, it is desirable to put cages inside the cylinder,

for which the method does not converge using the velocity matching condition (Section 3.3.3). In this paper,

we analyze another approach which uses velocity condition on the inner cage r ¼ R1 and match the pressure

and vorticity on the outer cage r ¼ R2. This is a natural approach since both pressure and vorticity are

primary variables.

Since the first step for this approach is identical to that of velocity matching, we only need to find the

matching equations for the second step. It is not difficult to verify that the pressure and vorticity can be

obtained as
pðf ;nÞðr; hÞ ¼ pðf ;nÞ0 þ 2 4aðnÞ1 r
�

� bðnÞ1 r�1
�
cosðhÞ � 2 4âaðnÞ1 r

�
� b̂bðnÞ1 r�1

�
sinðhÞ þ 4

X
k

aðnÞk ðk
h

þ 1Þrk

� bðnÞk ð1� kÞr�k
i
cosðkhÞ � 4

X
k

âaðnÞk ðk
h

þ 1Þrk � b̂bðnÞk ð1� kÞr�k
i
sinðkhÞ; ð3:34Þ
xðf ;nÞðr; hÞ ¼ �4aðnÞ0 � 2 4aðnÞ1 r
�

þ bðnÞ1 r�1
�
cosðhÞ � 2 4âaðnÞ1 r

�
þ b̂bðnÞ1 r�1

�
sinðhÞ � 4

X
k

aðnÞk ðk
h

þ 1Þrk

þ bðnÞk ð1� kÞr�k
i
cosðkhÞ � 4

X
k

âaðnÞk ðk
h

þ 1Þrk þ b̂bðnÞk ð1� kÞr�k
i
sinðkhÞ ð3:35Þ

corresponding to the solution wðf ;nÞ. For wðl;nÞ, we have
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pðl;nÞðr; hÞ ¼ pðl;nÞ0 þ 2 4aðnÞ
1 r

�
� bðnÞ

1 r�1
�
cosðhÞ � 2 4âaðnÞ

1 r
�

� b̂bðnÞ
1 r�1

�
sinðhÞ þ 4

X
k

aðnÞ
k ðk

h
þ 1Þkrk

� bðnÞ
k ð1� kÞkr�k

i
cosðkhÞ � 4

X
k

âaðnÞ
k ðk

h
þ 1Þkrk � b̂bðnÞ

k ð1� kÞkr�k
i
sinðkhÞ; ð3:36Þ
xðl;nÞðr; hÞ ¼ �4aðnÞ
0 � 2 4aðnÞ

1 r
�

þ bðnÞ
1 r�1

�
cosðhÞ � 2 4âaðnÞ

1 r
�

þ b̂bðnÞ
1 r�1

�
sinðhÞ � 4

X
k

aðnÞ
k ðk

h
þ 1Þkrk

þ bðnÞ
k ð1� kÞkr�k

i
cosðkhÞ � 4

X
k

âaðnÞ
k ðk

h
þ 1Þkrk þ b̂bðnÞ

k ð1� kÞkr�k
i
sinðkhÞ: ð3:37Þ

When the pressure and vorticity values are matched on the outer cage, i.e.,

pðl;nÞðR2; hÞ ¼ pðf ;nÞðR2; hÞ; xðl;nÞðR2; hÞ ¼ xðf ;nÞðR2; hÞ; ð3:38Þ

we have pðf ;nÞ0 ¼ pðl;nÞ0 , and for higher order cosine modes

Dk
aðnÞ
k

bðnÞ
k

 !
¼ Ek

aðnÞk

bðnÞk

 !
; ð3:39Þ

where

Dk ¼
ðk þ 1ÞRk

2 �ð1� kÞR�k
2

ðk þ 1ÞRk
2 ðk � 1ÞR�k

2

	 

; ð3:40Þ
Ek ¼ kDk 0ð Þ ð3:41Þ

for k P 2. And for k ¼ 1, we have

D1 ¼
4R2 �R�1

2

4R2 R�1
2

	 

; ð3:42Þ
E1 ¼ D1 0ð Þ: ð3:43Þ

The iterative matrix is

Tk ¼ Dkð Þ�1EkA�1
k

Bk

0

	 

;

where Ak and Bk are given earlier in (3.13) and (3.14). For k ¼ 0, we simply have aðnÞ
0 ¼ aðnÞ0 ¼ a0. The

derivation for the coefficients of the sine modes is identical.

3.3.3. Discussion

As we have shown previously, the convergence of PHYSALIS for biharmonic equation depends on

whether q0 and the spectral radius of the iterative matrix Tk are less than one. We first consider the case
when velocity matching conditions are used. For k ¼ 0 (the zeroth mode), the convergence rate depends

on

q0 ¼
1� ðR2=R1Þ2

1� ðR1=R1Þ2
R2
1 � 1

R2
2 � 1

:
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It can be seen clearly that 06 q0 < 1 as long as 16R1 < R2 6R1. On the other hand, we may have

q0 > 1 when R1 < R2 < 1. Furthermore, q0 ¼ 1 when R2 ¼ R1. This indicates that the iteration may not

converge for a single cage case or if the cages are inside the cylinder. When the two cages are both outside

the cylinder, the zeroth mode converges. Whether the method converges or not will depend on the higher

order modes, i.e., when kP 1.

For the modes with kP 1, even though the analytical expression of the eigenvalues of Tk can be obtained,

they are too complicated to be useful. Instead, we computed the spectral radius numerically using Matlab.

As shown in Fig. 2, the spectral radius qk of Tk is less than one for all k (up to k ¼ 10 for our computation)
when 16R1 < R2 6R1. The largest value occurs when k ¼ 1 which indicates that the convergence is the

slowest for this mode. As long as R2 is not too close to R1, the spectral radius of Tk is much smaller than one.

Therefore, the method will converge and a reasonable rate for all the coefficients in the eigenfunction

expansion, thus the flow fields.

When the pressure and vorticity are used in the matching conditions to update the coefficients in the

eigenfunction expansion, we note that the convergence for the k ¼ 0 mode is achieved in one iteration.

Furthermore, since D�1
k Ek ¼ ðkI 0Þ, the iterative matrix Tk is independent of R2. This means that the lo-

cation of outer cage is irrelevant for the convergence of the method. An obvious choice for the outer cage is
therefore the inner cage and the computation can be carried out on a single cage. In Fig. 3, the spectral

radius qk is plotted as a function of R1 the inner (single) cage radius and k. It can be seen that the method is

convergent since qk < 1 when 0 < R1 < 1 and 16 k6 10. However, it can be also observed that qk ! 1 as

k ! 1 or R1 ! 0. Thus, convergence becomes slow for high frequency modes or when the cage radius is

small. In practice, one usually truncate the eigenfunction expansion. Thus, in order to achieve reasonable

convergence rate, one should place the cage as close to the cylinder surface as possible, as indicated by

Fig. 3.

When R1 > 1, i.e., the cage is located outside the cylinder, the spectral radius qk is plotted in Fig. 4. It can
be seen clearly that qk increases rapidly from zero (when R1 ¼ 1) to some large value (greater than one for

most of the k plotted) as R1 increases. Even though one can in principle always locate the inner cage
Fig. 2. Spectral radius of Tk as a function of k and R2 when velocity is used as matching condition to update the coefficients on the

outer cage. The inner cage is located at R1 ¼ 1:1 and the far-field boundary is located at R1 ¼ 5.
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sufficiently close to the cylinder for a given k to ensure convergence, it is more desirable to have the cage

inside the cylinder and close to the cylinder surface in practice.

The effects of cage locations on the convergence rate of the method are summarized in Tables 1 and 2. In

the case of using velocity matching, the best strategy is to place both cages outside the cylinder and
Fig. 3. Spectral radius of Tk as a function of k and R1 when pressure and vorticity matching condition is used to update the coefficients

on the outer cage, whose location is irrelevant in this case. The far-field boundary is located at R1 ¼ 5 and inner cage is inside the

cylinder with 0 < R1 6 1.

Fig. 4. Spectral radius of Tk as a function of k and R1 when pressure and vorticity matching condition is used to update the coefficients

on the outer cage, whose location is irrelevant in this case. The far-field boundary is located at R1 ¼ 5 and the inner cage is outside the

cylinder with 16R1 6 1:2.



Table 1

Illustration of convergence for Stokes flows using velocity matching

R2 6R1 R2 > R1 (R2 
 R1) R2 � R1

R1 6 1 Diverges Diverges Diverges

R1 > 1 Diverges Converges (slow) Converges (fast)

Table 2

Illustration of convergence for Stokes flows using pressure/vorticity matching

R1 � 1 R1 
 1 R1 � 1

Converges (slow) Converges (fast) Diverges
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maintain some distance between them. In other words, one should avoid placing both cages too close to the

cylinder surface. When the pressure and vorticity are used as matching conditions, however, it is desirable

to place the inner cage as close to the cylinder surface as possible while the location of the outer cage is

irrelevant.
4. Conclusion

In this paper we have investigated the convergence property of PHYSALIS when it is applied to solve

the Laplace and biharmonic equations using circular cages. To simplify the analysis, we have assumed

circular geometry and that the far-field solution (solution between the inner cage and the far-field

boundary) can be obtained exactly. In practice, the far-field solution is obtained numerically. For example,
in [14], a fractional step method on a staggered grid is used to find the outer solution.

In general, we found that the convergence for the Laplace equation is robust if proper matching con-

ditions are used on the inner and outer cages. In the context of potential flows, the best strategy is to use the

normal velocity on the inner cage to compute the far-field solution and update the coefficients of the ei-

genfunction expansion of the local solution by matching the velocity potential on the outer cage. Con-

vergence can be achieved as well if the velocity potential is used on both cages while the speed of

convergence is slower in this case.

The situation is more complicated for the biharmonic equation. In the context of Stokes flows, when the
velocity is used as matching condition on the outer cage to update the coefficients of the local solution

(eigenfunction expansion), convergence becomes slow when the cages are close to the cylinder and the

method does not converge when the cages are inside the cylinder or for a single cage case. Since the real

interest of using PHYSALIS is for computing the incompressible flows governed by the Navier–Stokes

equations, and the analytical expression (eigenfunction expansion) is only valid near the particle surface, we

are facing a dilemma. On one hand, we are required to set up the cages near the surface in order to use the

eigenfunction expansion. On the other hand, convergence becomes slow when the cages are near the

particle surface.
The convergence result for the pressure–vorticity matching condition is more interesting from practical

point of view since the method converges when a single cage is used and the cage can be placed inside the

cylinder. More importantly, the analysis indicates that convergence is faster when the cage is closer to the

surface, which avoids the dilemma faced by the velocity matching conditions when the method is applied to

the Navier–Stokes equations. Therefore, a fine grid is desirable as the cage is normally set up using the grid

points next to the cylinder. The analysis also shows that the convergence is in general better when the cage

is inside the cylinder than when it is outside. Slower convergence is expected for high frequency mode in the
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local expansion solution, which suggests that the method works better for less oscillatory flows. Finally, we

note that pressure and vorticity matching conditions can be used while the computation is carried out using

either primitive variable formulation (velocity and pressure as primary unknowns) or the stream-function

vorticity formaulation (in the two-dimensional case). In either case, vorticity or pressure needs to be

computed based on the primary unknowns and some care should be taken to avoid the loss of accuracy.

However this issue is not addressed in the present study.
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